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A numerical technique has been developed for calculating the three-dimensional, 
transient dynamics of incompressible fluid having a free surface. The Navier-Stokes 
equations are solved by a solution algorithm based on the Marker-and-Cell method. 
The flow may be calculated around variously shaped and spaced obstacles that are 
fully submerged or penetrate the surface. To illustrate the capability of this technique 
a variety of examples are presented. 

INTRODUCTION 

The recent development of a general method for the numerical calculation of  
three-dimensional, incompressible, transient fluid flow [1] has provided a means 
of studying many effects heretofore not calculable by numerical methods. As 
initially developed this method solves the Navier-Stokes equations for an incom- 
pressible, confined flow over and around variously shaped and spaced obstacles, 
and is based on a variant of the original Marker-and-Cell method [2] for two- 
dimensional flow. In this paper an extension of the new three-dimensional technique 
is presented that permits the calculation of  free surface flows in the vicinity of 
submerged and exposed obstacles. A number of sample calculations are included 
to demonstrate the wide application of this new capability. 

THE NUMERICAL METHOD 

The Marker-and-Cell method is a finite-difference technique for calculating the 
time dependent motion of a viscous, incompressible fluid having a free surface. 
A stationary network of rectangular cells is utilized to divide the calculational 
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region into a finite number of elements with which the fluid variables are associated. 
The dimensions of a three-dimensional cell are given by 8x, By, and 8z. The fluid 
behavior is computed using finite-difference approximations to the Navier-Stokes 
equations and equation of continuity. The components of velocity (u, v, w) are 
specified at the cell faces to which they are normal. For example, the x-component 
of velocity, ui+�89 is located at the center of the boundary between cell ( i , j ,  k )  
and cell (i -t- 1, j ,  k) ,  where the indices refer to cells counted out from the mesh 
origin. Fluid pressures, P~,~,k, are specified at the center of each cell containing 
fluid, and the free surface is defined by its height, h~,i, above the z = 0 plane, 
in the center of each cell column (i, j).  For simplicity the surface is assumed single 
valued with respect to z. 

A numerical solution for the fluid flow is achieved by advancing the fluid 
configuration through a series of small time increments 3t. Mass and momentum 
conservation are assured through the use of conservative finite-difference equations. 
The solution to the momentum equations is obtained in two steps. Initially an 
explicit calculation is performed that uses the previous-time velocities and pressures 
to determine accelerations. Fluid incompressibility is not necessarily assured in this 
part of the calculation; therefore, the initial velocity field must be adjusted. An 
iterative algorithm is used for this purpose that adjusts the velocities through 
changes in the pressure field. This final step was accomplished in the original 
Marker-and-Cell method by solving a Poisson equation derived from the condition 
that the velocity divergence at the end of the time step be zero. 

The solution algorithm used in the technique reported here is somewhat different 
in detail, but not in spirit. The basic solution technique has been previously reported 
in detail [1, 3, 4], but the essence of the algorithm is as follows. The pressure in 
each Eulerian cell is adjusted proportional to the negative of the velocity divergence 
D = V �9 u. The idea behind this can be understood intuitively by noting that if D 
in a cell is positive the fluid pressure must decrease to reduce D, while a negative D, 
corresponding to a net mass inflow, requires an increase in cell pressure. 

A pressure leading to a zero divergence can be obtained by simultaneously 
iterating the pressure and velocity fields, first calculating a pressure change caused 
by a nonzero D, then adjusting the velocities to get a new D, etc. Thus, for cell 
(i, j, k), the pressure changes according to 

p~+l ~.~.k = Pi.~.k q- ~Pid.k, ( l )  

where I is the iteration number, 

~Pi.j,k ~ - -~n i . j .~  (2) 

and 
1 

fi = 23t((1/3x~ ) q_ (1/3y2) q_ (1/3z2)) . (3) 



236 NICHOLS AND HIRT 

Then each velocity component specified on a face of cell (i,j, k) 
according to the pressure change; for example 

~+1 
i+l/2,J.k = Ui+l/2,j,k -~ (~t /~X)  api , j ,k  

U~+I - -  z --  (3t /3x)  ~Pid.k i--1/2,J,k - -  Ui--1/2,j,k 

is adjusted 

(4) 

If  the cell being considered is a surface cell, that is, one in which the fluid surface 
is located, the pressure is calculated by a linear interpolation or extrapolation from 
the pressure in the fluid cell immediately below. Thus, 

Pi, j ,k  • ~TPa ~- (1 - -  ~ )P~ . J ,k -1 ,  (5) 

where Pa is a pressure applied at the free surface, ~7 ---- 3z/d, and d is the distance 
from the surface to the center of the cell below. If  the cell below the surface cell 
is an obstacle or rigid boundary cell, indicating the local fluid depth is less than 8z, 
then a hydrostatic pressure is calculated and set in the cell. In either of these cases 
8p~,j,~ must also be determined for the velocity calculations. 

FREE SURFACE CONDITIONS 

The fluid surface is single-valued and is initially defined by specifying the surface 
height above the bottom of the mesh. The surface height is defined at the center of 
each vertical column of  cells in the three-dimensional mesh. This idea was first 
employed in a MAC-like program by Chan [5] for two-dimensional free surface 
flows. 

The change in the surface elevation is determined by the local fluid velocity, 
that is, by the vertical component of the fluid motion plus the horizontal convection 
of the surface elevation from adjacent cell columns, 

( a h / a t )  = w - u ( a h / a x )  - v ( a h / ~ y ) .  (6) 

The finite-difference approximation of  this equation is written using a space- 
centered, forward-in-time differencing method. This particular difference approxi- 
mation is unstable because of a negative diffusion truncation error, see [6], but this 
error can be compensated for by adding to the surface height equation a positive 
diffusion term 

~((e2h/~x 2) q- (~h/~y2)),  (7) 

where V is a constant diffusion coefficient, chosen greater than (~t/2) max (u s, v ~) to 
insure stability. Other difference approximations could be used [5] that do not 
require the explicit addition of stabilizing terms, but as shown in Ref. [6] these 
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forms are basically the same as that used here. The complete finite-difference form 
of the kinematic surface equation is, therefore, 

hn+i h~.. i-n+i 1 / n+l  n+l  . . . .  h~ 
i.~ = ~., -t- 8 t  lw id .e  -~- 4 - ~  (Ui+l/Ud.e q- u i - i /2d ,k) tn i - l ,~  - -  i + l d )  

1 , ~+l ,+1 , , - ,  
+ ~ tvi.j+l/2,~ § vi.~-l/2,k)tni.~--1 --  h~.j+l) 

@ )' ~-~ (hi+l. j - -  2h~j + h,-1.~) q- ~ ( / j + l  - -  2h~ + h,.j-x) , (8) 

where the indices i , j ,  k refer to the cell in which the surface is located, n denotes the 
calculation time cycle, and ~i,J,k is the vertical velocity at the surface, obtained by 
linear interpolation between the w-velocity at the top and bottom faces of the 
surface cell. 

The free surface boundary conditions require a determination of  the normal and 
tangential velocities immediately outside the surface. These velocities are chosen 
to satisfy the appropriate free surface stress conditions. However, the complete 
viscous stress conditions as described in [7] have not yet been incorporated. In this 
paper only the conditions appropriate for an inviscid fluid will be discussed. 

As in the original Marker-and-Cell method, velocities normal to the surface are 
set to satisfy the incompressibility condition in surface ceils. The tangential 
velocities (u, v) in the cells immediately outside the fluid are obtained by setting 
them equal to the adjacent interior values, which is consistent with zero shear 
stress at the surface. 

W A L L  BOUNDARY CONDITIONS 

The calculational mesh is surrounded by a one-cell-thick layer of  cells, which are 
used for setting boundary conditions. The boundaries may be free-slip or no-slip 
walls, or any part of a boundary may be an inflow or outflow boundary. In addition, 
any interior cell may be designated as an obstacle cell, in which case it contains no 
fluid and its edges are treated as rigid boundaries. These obstacle cells may be 
located anywhere within the mesh and anywhere relative to the free fluid surface, 
that is, they may be completely submerged, or they may extend through the fluid 
surface. Any configuration of obstacle cells may be specified, and in this way a 
great deal of flexibility is achieved in obstacle shapes. 

The condition applied to rigid no-slip wall boundaries requires zero tangential 
velocity at each boundary, while for free-slip boundaries the shear-stress is zero. 
In both cases the velocity normal to the wall is zero. A prescribed inflow simply 
requires the setting of the chosen velocity at the boundary cells. 
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The continuative boundary condition is the most difficult to set properly. The 
scheme found to have little upstream effect is to require a zero gradient of the 
tentative velocities (obtained before the pressure iteration) normal to the boundary. 
These velocities are set at the beginning of each time cycle and are then adjusted 
during the pressure iteration in the same manner as interior cell velocities. Since 3p 
is calculated in surface cells, this same condition is applied for surface cells adjacent 
to a continuative boundary. A zero shear stress condition is also used at a contin- 
uative boundary. 

NUMERICAL STABILITY CONDITIONS 

The conditions necessary to prevent numerical instabilities in the three- 
dimensional finite-difference approximations are only slightly changed from their 
two-dimensional counterparts. The distance the fluid travels in one time increment 
must be less than one space increment. This restricts the time increment to 

3x 3y 3z ) 
8 t < m i n  [ u [ '  { v [ '  [wl  " (9) 

When the viscous diffusion terms are important the condition necessary to insure 
stability through successive time steps is 

1( ~x~ ~y~ ~z 2 ) 
vat < ~ 3y 2 ~z ~ + ~x 2 ~z 2 + 3x ~ Sy 2 , 

(lo) 

in which v is the kinematic viscosity coefficient. The free surface capability adds an 
additional stability condition. It is necessary to insure that the distance a surface 
wave travels during one time increment be less than the horizontal cell dimension. 
This condition can be approximately written as 

c3t < min(3x, 3y), (11) 

where c is the wave speed. 
There are two additional kinds of  instability related to the occurrence of  trun- 

cation errors that have the form of "negative" diffusion. These conditions, which 
are fully described in [1] and [6], generally require choosing a value of  viscosity 
large enough to satisfy the condition 

3z ~ Ow max (T 

The use of viscosity satisfying (12) does not necessarily impose an excessively 
stringent restriction on the magnitude of  Reynolds number that can be calculated, 
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especially if the truncation error analysis is utilized to derive a local correction 
to remove the destabilizing effects. Alternatively, we could use other finite-difference 
approximations, such as the donor cell instead of the space-centered differencing 
method employed here. The resulting truncation errors, however, may then be 
excessively diffusive [6], leading to severely inaccurate Reynolds number inter- 
pretations. In any case, truncation errors exist and must be considered for any 
finite-difference scheme. If  the nature of the calculation requires a precisely specified 
viscosity, it is possible to add this in after removal of the truncation errors to the 
desired order of ~t and 3x. However, if the flow variations to be calculated can 
really be adequately resolved by the mesh, then such stabilizing viscous stresses, 
as proposed previously, are generally negligible. This point is more fully discussed 
in Ref. [7, 8]. 

It was reported by Chan and Street [5] that the Marker-and-Cell method was 
stable when run with v = 0, and with their improved free surface treatment. It is 
now believed that this conclusion holds only for certain special cases, especially 
those in which the regions of  negative truncation diffusion translate relative to the 
Eulerian mesh. Indeed, their same problem (propagation of a solitary wave down 
a wave tank) has been run with the method reported here, and with v = 0. No 
visible instabilities were created. In this particular case, one of the truncation error 
terms that can contribute a negative viscosity arises from the horizontal velocity 
gradient. On the leading edge of the solitary wave this makes a positive contribution 
to the effective viscosity. On the trailing edge of the wave this term makes a negative 
contribution that could lead to an instability. The wave speed in these calculations 
was such that a local disturbance would be amplified for only approximately 
25 time steps. Consequently, any short wavelength disturbance existing in this 
region would not have time to grow to an observable magnitude. 

DATA DISPLAY 

Presentation of data from a three-dimensional calculation in an easily compre- 
hensible form is difficult. An effective technique is to display such data as velocity 
fields, surface configurations, etc., using computer generated perspective pictures. 
For  this purpose a hidden-line perspective view plot routine, developed especially 
for displaying data in an Eulerian mesh, has been recently developed [9]. Three- 
dimensional stereoscopic views of data plots can be made by constructing two 
perspective pictures from slightly separated viewing points and viewing them in 
a stereo-slide viewer. 

To observe velocity fields, velocity vectors may be plotted for any chosen 
combination of cells in the mesh. Velocities plotted in selected planes in a region 
of interest can give a fairly good idea of the flow, but sometimes it is still difficult 
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to visualize the full three-dimensional flow pattern. This can often be remedied by 
plotting in stereo all the velocity vectors in a selected volume of  interest. Sometimes 
only portions of a flow field are plotted, thus emphasizing special regions of 
interest. This has been used effectively, for example, to observe the structure of  an 
eddy formed in the wake of  an obstacle. 

Surface configurations can be plotted in perspective by first computing the 
elevation of the surface at each vertical mesh line. These elevations are obtained 
by averaging the surface heights, hi.~, in the four adjacent cell columns. The surface 
is then constructed by connecting lines between pairs of elevation points. The hr 
points themselves could be connected in this way, but undesirable gaps would be 
left near all mesh boundary and obstacle walls. 

The transient contortions of a surface are most effectively displayed by making 
motion pictures of  the surface in perspective. In most instances, the time step 
used for an optimum numerical solution is also a reasonable time step for the 
interval between movie frames. 

CALCULATIONAL EXAMPLES 

To demonstrate the capability of  this three-dimensional free surface technique, 
a variety of examples have been run on a CDC 7600 computer. All of the problems 
shown here used only the 64,000 word fast core memory. A large core memory is 
also available, which makes an additional 400,000 words accessible. Since the 
large core memory is not a direct access core, its use does slow down the calcu- 
lational speed somewhat. Typical calculation times vary from 2.64 seconds per time 
cycle for a problem with 3360 calculational cells, to 10.34 seconds per time cycle 
for flow in a mesh of 6336 cells. In the latter case (not illustrated in this paper) the 
large core memory was used. 

Test problems include some nearly-inviscid two-dimensional problems run to 
compare with previous numerical calculations and analytical studies, and some 
three-dimensional problems of fluid flowing over and around obstacles, which 
have not previously been calculable. 

An example of  a two-dimensional test calculation involves the generation of  
waves in a tank by a piston at one end of the tank. A typical calculation consists of  
a mesh of 68 x 2 X 10 interior cells in the x, y, z-directions, respectively. To 
actuate a piston by moving it at one end of the mesh creates a problem, since all 
mesh boundaries are stationary. This difficulty was overcome by applying an 
acceleration to the fluid instead, that is, by adding to the initial u-equation each 
cycle an acceleration equal to 

~ ---- --Ato ~ cos tot, (13) 
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where A represents the piston amplitude and a, the piston frequency. The point of 
view taken here is that the mesh is attached to the piston and is, therefore, moving 
with respect to the laboratory frame of reference, The mesh boundaries have rigid, 
free-slip conditions applied on all except the right-hand boundaries, which is a 
continuative boundary that allows fluid to flow in or out. This simulates the 
motion of a piston at one end of the tank without the generation of waves at the 
other, continuative, end. 

Fro. 1. Perspective view of the surface configuration generated by a periodic piston at times 
0., I0., and 24, 

Shown in Fig. 1 are perspective view plots of the fluid surface. In nondimensional 
units the initial fluid height is 1.02, the piston amplitude is 0.10, and the mesh has 
square cells with edge length 0.20. The period of the piston is 5.22. Therefore, from 
the relation [10], 

oJ 2 = g k  tank kd,  (14) 

where g = --1.0 is the gravitational acceleration and k is the wave number, the 
expected wavelength is 4.00, and the calculated wave speed is 0.77. The measured 
wavelength is 4.05 ! 0.10 and the measured wave speed is 0.80 =k 0.03, showing 
good agreement with the theoretical results. 
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An analytical solution has been given for the surface elevation in this problem 
[11]. The numerical surface elevation at early times compares very well with the 
analytical results, although some amplitude damping from viscous dissipation is 
observed as the waves progress down the tank. 

Fza. 2. Perspective views of the surface of an undular bore at  times 0., 5 .  and 15. 

A bore can be generated by uniformly accelerating the piston, as described 
before, over some time interval to, as seen in Fig. 2. By choosing the piston Froude 
number, which is based on the initial fluid depth and final piston velocity, such 
that the change in fluid depth is much less than the initial depth, a nonbreaking, 
undular bore is formed. 

Several undular bore calculations were done with a piston Froude number of 
0.2475. The initial depth of the fluid was vertically resolved in six cells, while 68 cells 
were used in the downstream direction. Piston accelerations were applied during 
one time step for both to of 0.0I and 0.10, while for to of 1.00 the acceleration was 
applied over ten time steps. The calculated late time elevation change in units of 
the initial elevation for all of these runs was 0.2627 with a persistent slight oscillation 
in time of 10.0001. This is to be compared with a long wave theory prediction of 
0.2628 [12]. For a to of 3.00, applied over 30 time steps, the elevation change was 
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the same, but the slight oscillations were gone. When the acceleration was applied 
more slowly, over 100 time steps for a t o of  10.00, the calculated elevation change 
agreed with the theoretical value of 0.2628. 

The three-dimensional capability of  this technique is demonstrated with three 
examples of  flow around obstacles. In all cases the obstacles are contained in a 
15 x 15 x 7 cell mesh. The boundary at x ---- 0 is an input boundary, and the 
opposite end of the mesh is an outflow boundary with continuative boundary 
conditions. All other boundaries are free-slip rigid walls. 

{a) 

{b) 

FIG. 3. Perspective views of the surface configuration resulting from flow over a submerged 
obstacle as seen from the side (a) and downstream (b). 

The flow over a submerged obstacle is shown in Fig. 3. The 3 x 3 X 3 cell 
obstacle is immersed in a fluid initially 3.5 cells deep. The flow Froude number  is 
2.0, based on initial fluid depth and input velocity. Plots are shown in Fig. 3 at a 
time of 2.0, after 20 calculational time cycles. Views f rom two separate viewing 
positions are shown: plot (a) shows the fluid flowing through the mesh f rom left 
to right; plot (b) is viewing the flow f rom a centered, downstream position. The 
advantages of having a " t ransparent"  surface plot are demonstrated here. Not  only 
is the obstacle visible through the surface, but none of the surface itself is hidden 
from view. 
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As previously mentioned, the surface configuration is best viewed in stereo, but 
this is difficult for many people without a special viewing instrument. Nevertheless, 
it can be done with a little practice. Figure 4 shows the views for both eyes, viewing 
the submerged obstacle from the side. This view will appear in stereo by holding 
the pair of pictures at a comfortable viewing distance, slightly crossing the eyes, 
and focusing in front of the picture [9]. The persistent viewer should be able to 
bring these views into a single stereo image lying somewhere between the eyes and 
the pictures. 

FIG. 4. The two perspective views appear as a single stereo picture when viewed with eyes 
"slightly crossed." 

A calculation of flow in the vicinity of  a vertical structure such as a pile is shown 
in Fig. 5. Fluid is flowing around a 3 x 3 x 7 cell obstacle with flow Froude 
number 1.06. The gap between the surface and the front of the obstacle is inherent 
in our present perspective view plot routine. Gaps such as these, which are less 
than a cell width, are permitted in payment for a large increase in plotting 
speed [9]. 

Perspective view of the surface configuration resulting from flow past a rectangular FIG. 5. 
pile. 
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Figure 6 shows a similar study: flow past a 2 x 5 x 7 cell obstacle, with a 
Froude number of 0.82. As expected, an eddy tries to form behind the obstacle; 
however, it comes and goes at regular intervals. This behavior is coupled with a rise 
and fall of the fluid elevation behind the obstacle; the eddy forms as the depth 
behind the obstacle increases and disappears as it falls. The period of the undu- 
lations is not affected by increasing the length of the mesh by an additional 
five cells. The initial conditions for this calculation employ a uniform u velocity, 
equal to the continuous input velocity, with v and w velocities zero. 

FIG. 6. Perspective views of the surface configuration resulting from flow around a wide 
obstacle at slightly different times. 

Another initial condition is obtained by placing a "frictionless lid" on the surface 
(accomplished by placing a horizontal obstacle, with free-slip boundaries, in the 
plane of cells just above the fluid). This two-dimensional confined flow problem is 
then run until the flow behind the obstacle is well established; then the "l id" is 
removed and the normal three-dimensional free surface calculation started. With 
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these  in i t ia l  c o n d i t i o n s  the  m a g n i t u d e  o f  the  u n d u l a t i o n s  is dec reased  b u t  the i r  

p e r i o d  r ema ins  u n c h a n g e d .  
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